Research Themes
- Compressed Sensing Based Detection of Localized Heavy Rain using Microwave Network Attenuation
- MIMO-OFDM with ESPAR antenna
- Compensation of MIMO-OFDM Radio Signal Distortion in Radio over Fiber- Distributed Antenna System using optical TDM
- A Study on Vehicle Speed Detection System using Leaky Coaxial Cable antenna
- OSTBC in Multiple Polarized MIMO-OFDM Systems
- Low Complexity Channel Estimation based on Compressive Sensing for OFDM Systems
- Modified Matching Pursuit Based Channel Estimation for ISDB-T
- Improving Detection Accuracy using Subspace Method in LCX Based Positioning System of Radio Terminals
- MIMO-OFDM with ESPAR antenna
- Compensation of MIMO-OFDM Radio Signal Distortion in Radio over Fiber- Distributed Antenna System using optical TDM
- A Study on Vehicle Speed Detection System using Leaky Coaxial Cable antenna
- OSTBC in Multiple Polarized MIMO-OFDM Systems
- Low Complexity Channel Estimation based on Compressive Sensing for OFDM Systems
- Modified Matching Pursuit Based Channel Estimation for ISDB-T
- Improving Detection Accuracy using Subspace Method in LCX Based Positioning System of Radio Terminals
- Sensing
- Particle Filter-Assisted Positioning Method for Identifying RFID-Tag Implanted in the Organism
- Joint Estimation of Position and Gain for RFID-Tag Assisted Surgery Support System
- Joint Estimation of Position and Gain for RFID-Tag Assisted Surgery Support System
- Wireless power transmission
- Wide-area wireless power supply
Research Topic: OSTBC in Multiple Polarized MIMO-OFDM Systems
Person in charge: Geng Wan
Research Brief
Uses of dual- and triple-polarized antennas are promising solutions for realizing compact devices also robust against many imperfections as compared to spatially separated antenna systems. This research is aiming to model the dual- and triple-polarized MIMO channel and investigate the BER performance of orthogonal space-time block coding (OSTBC) in MIMO-OFDM systems using proposed dual- and triple-polarized MIMO channel models.
PPTX