Hardware Implementation of Channel Estimation for OFDM Receiver with ESPAR Antenna

Rian Ferdian, Yafei Hou, and Minoru Okada Nara Institute of Science and Technology Network Systems Laboratory

pilot

ESPAR-OFDM System

Electronically steerable passive array radiator (ESPAR) antenna, is an adaptive beamforming multi-antenna system.

- Low Power (Only one RF Front–End)
- Low Cost (Using inexpensive varactor circuit)
- Almost the same performance with MIMO

Channel Estimation for ESPAR OFDM

FFT Window

 \mathbf{H}_{ea}

The transmission in the ESPAR-OFDM cannot be modeled as a diagonal matrix anymore, in FFT Windo result, the channel estimation cannot utilize the conventional interpolation method.

а

CS complexity Reduction

Multi-column CS

All the impulse response positions are the same for each antenna element. Thus, a new sensing matrix with smaller size can be proposed.

 $\Psi_N = \mathbf{G}_p^c \mathbf{F}_L diag(\mathbf{P}) + \mathbf{F}_L diag(\mathbf{P}) + \mathbf{G}_n^c \mathbf{F}_L diag(\mathbf{P})$

Pilot Selection

Pilot selection technique at the receiver side to reduce the sensing matrix size even more. A selection with genetic algorithm is proposed to maintain a good mutual coherence property.

Power Reduction of Sensing Matrix

Because the sensing matrix is based on the Discrete Fourier Transform matrix, a power reduction method can be applied to reduce the

